Lockheed Martin Donates Clean Room to the Lunar Orbiter Image Recovery Project

Lockheed Martin Corporation has donated the labor required to erect a class 10,000 clean room to the Lunar Orbiter Image Recovery Project (LOIRP).  This clean room will help protect our refurbished 1960’s era Ampex FR-900 tape drives from the environment inside NASA Ames Research Park Building 596 aka “McMoons”, which was originally constructed to house a McDonalds restaurant.
In the 1960’s these tape drives were operated in an old style computer room, with raised floors ultra-clean air, and constant air conditioning.  Since our building’s air conditioning system was sized for the heat of the kitchen and lots of customers, we are able to maintain the temperature to near optimum conditions.  However, dust and dirt are still a problem with the finely tuned machine.  
One large dust particle could break a head tip if it went into it in the wrong direction.  As such, this 10 x 12 foot clean room will provide a more optimal environment for both of the tape drives.  
The clean room has a positive air pressure and heavy filtering of the air to reduce dust particles in the air.  The positive air pressure also helps to keep outside floor dirt from being sucked up in the fans that cool the machines.
The Lockheed Martin team who helped in the assembly of the portable clean room were Bob Allen, Lance Ellingson, Robert Phillips, and David Leskovsky.
“This generous gift from Lockheed Martin will help us to keep the our tape drives operating better in an environment similar to what they were designed for” said Dennis Wingo, LOIRP project lead.

Continue reading “Lockheed Martin Donates Clean Room to the Lunar Orbiter Image Recovery Project”

LOIRP Article in Computer World: How We Got The Images

The lost NASA tapes: Restoring lunar images after 40 years in the vault, Computerworld
“Liquid nitrogen, vegetable steamers, Macintosh workstations and old, refrigerator-size tape drives. These are just some of the tools a new breed of Space Age archeologists is using to sift through the digital debris from the early days of NASA, mining the information in ways unimaginable when it was first gathered four decades ago. At stake is data that could show Earth’s risk of an asteroid strike, shed light on global warming and — perhaps — even satisfy those who think the moon landings were a hoax. The most visible of the archeologists is arguably Dennis Wingo, head of Skycorp Inc., a small aerospace engineering firm in Huntsville, Ala. He’s the driving force behind the Lunar Orbiter Image Recovery Project, operating out of a decommissioned McDonald’s (since dubbed McMoon’s) at NASA’s Ames Research Center in Mountain View, Calif. The project’s goal is to recover and enhance as many of the original lunar landing images as possible.”

Lunar Orbiter Image Recovery Project (LOIRP) Progress Report 23 February 2009


Refurbished capstan motor. Copyright 2009 LOIRP reproduction or republication prohibited without prior written permission.


Ken and Nathan working on refurbished capstan motor. Copyright 2009 LOIRP reproduction or republication prohibited without prior written permission.


Ken working on refurbished capstan motor. Copyright 2009 LOIRP reproduction or republication prohibited without prior written permission.

The Challenges of Archiving

No Silver Bullet: Archive Challenges, Permabits and Petabytes
“Even worse, going beyond 5 years exceeds the functional life of media or recording technology, and maintaining physical readability becomes increasingly difficult. I’d be wiling to bet that a number of my readers have boxes of QIC-80 tapes in the garage or basement with old data on them. Even if the tapes have a 50 year lifespan, do you have any ideas on where to get a working QIC-80 tape drive? NASA just recently went through an amazing project to recover old Lunar Orbiter image data, involving finding, refurbishing and interfacing with 40-year-old Ampex tape drives, an enormous project covering more than a decade to complete. Media life isn’t the problem with long-term data storage, and “archival-grade” media isn’t going to solve your physical readability problems, because the reader hardware will never last as long as the media.”