Apollo 15 Landing Site and Lunar Rover Traverse Routes


Lunar orbiter photograph showing LRV traverse routes overlaid on landing site Description: An enlarged Lunar Orbiter photograph showing the Lunar Roving Vehicle (LRV) traverse routes overlaid on the Hadley-Apennine landing site. Apollo 15 is to land at the point labeled “site”, and a comparison of Apollo 14 crater sizes with those of Apollo 15 is included, also.

Lunar Orbiter Radiation Dosimetry Experiments


Radiation Dosimiter System Schematic
In addition to selenodesy the Planetology Subcommittee selected two other fields of scientific investigation for experiments on the first five Lunar Orbiters which made up Block I of the program. These were radiation and micrometeoroid flux in near lunar environment. The two experiments which Langley developed for the Orbiter were designed to measure the performance of the spacecraft as well as to provide useful data on potential hazards to manned missions to the Moon.
The radiation experiment was designed by Dr. Trutz Foelsche and had two objectives as outlined by him:
The Principal purpose of the lunar orbiter radiation-measuring systems was to monitor, In real time, the high radiation doses that would accumulate on the unprocessed film in case of major solar cosmic ray events. In this way It would be possible for the mission control to minimize the darkening of the film by operational maneuvers, such as stopping the photographic operation and acceleration of development of the film in the loopers, and in case of more penetrating events, shielding the film in the cassette by the spacecraft itself and by the moon. Furthermore, the independent measurement of radiation doses would contribute to the diagnosis of film failure due to other reasons.
A second purpose was to acquire a maximum amount of information on radiation on the way to the moon and near the moon, insofar as this could be achieved within the weight limitation of 2 pounds.
The danger that the film could be damaged by solar radiation had Dr. Foelsche and Dr. Samuel Ketzoff worried because the Eastman Kodak photographic subsystem provided only aluminum shielding at two grams per square centimeter at the film cassette and at two tenths of a gram per square centimeter in the rest of the system. Foelsche desired thicker shielding, but the contractors maintained that the film would be safe. The amount of shielding was a calculated risk, trading shielding weight against the probabilities of solar flare intensities.
Although he would have preferred to mount a more sophisticated experiment, Foelsche designed a measuring system to carry out the objectives described above., remaining within a one-kilogram weight limit. The system’s sensors, their arrangement and shielding, the measuring principle and dynamic ranges were all developed at Langley. The Lunar Orbiter Project Office at Langley and the Boeing Company then determined the specifications for the hardware, and Texas Instruments built and calibrated the experiment.
Source: Destination Moon: A History of the Lunar Orbiter Program
The data obtained from the radiation experiments on board the five Lunar Orbiter spacecraft had significant implications for the Apollo Program. What would be the approximate doses of radiation experienced by astronauts in space suits? In the Lunar Module? In the Apollo Command Module? To obtain an answer, the primary investigator, Dr. Trutz Foelsche, analyzed the data recorded by the two cesium iodide (CsI) detectors in each of the five Orbiters. One of the two was shielded by 0.2 gram of aluminum per square centimeter, the other by 2.0 grams aluminum per square centimeter. Because of the higher absorption of protons and alpha-particles per gram per square centimeter in soft tissue or water, the doses recorded by the Lunar Orbiter dosimeters had to be multiplied by two. The analysis showed that all events recorded were of significance to a man in space only where shielding was light, specifically in a space suit or in the Lunar Module.
The following table shows the skin doses that would be incurred in a space suit with shielding of 0.17 gram per square centimeter in the presence of three solar particle events.

Event Date

Radiation Dosage

September 2, 1966

270 rads in H2O

January 28, 1967

106 rads in H2O (24 rads behind 2 grams/cm2 shielding)

May 24/28, 1967

130 rads in H2O (Lunar Orbiter IV in high orbit)


Foelsche noted, however, that the skin doses approached or even surpassed the suggested maximum permissible skin dose (14PD) for astronauts for short-term exposure even for the moderate rates above. See the table

Types of Mission

Suggested MPDs for Astronauts

Eyes
(rad)
Blood-Forming Organs
(rad)
Skin
(rad)
Short Term
(up to two weeks)
27
52
233
Long Term
(several months)
250
150
500

In summary, the Lunar Orbiter radiation experiments contributed to four areas of scientific interest in addition to monitoring the doses on the camera film. First, they allowed estimates to be made of the skin dose rates behind 2 grams per square centimeter of shielding for astronauts passing through the Van Allen Belt. The estimates made from these data were based on an assumption of five passes through the belt in a one-year period. Second, the experiments contributed to information about the Moon’s core. The weakness or absence of an intrinsic magnetic field of the Moon, which Explorer XXXV confirmed, indicated that the Moon has no extended liquid conducting core like that scientists accept for the Earth.
Third, by comparing data of Pioneer V and VI (spacecraft that lagged behind or were ahead of the Earth while in orbit around the Sun) with Lunar Orbiter data, preliminary conclusions could be drawn concerning the spatial and lateral extensions and the intensities of solar particle flux during the 1966 and 1967 events. Finally, the experiments measured, by simulation, high skin doses in a light space suit near or on the Moon for the moderate size solar particle events of the August 1966 to August 1967 time span. From these data the inference could be made that in rare cases of large event groups, such as those of 1959 and 1960, the Apollo astronauts might experience skin doses greater than 1,800 to 5,000 rads in one week, if no precautions were taken.
The radiation experiments produced data which confirmed that the design of the hardware that Apollo astronauts would use on their lunar missions beginning in 1969 would protect them from average and greater than average short-term exposure to solar particle events.
Source: Destination Moon: A History of the Lunar Orbiter Program

Lunar Orbiter 4 Mission

Alternate Names: Lunar Orbiter-D, 02772
Launch Date: 1967-05-04
Launch Vehicle: Atlas-Agena D
Launch Site: Cape Canaveral, United States
Mass: 385.6 kg
Nominal Power: 375.0 W
Launch/Orbital information for Lunar Orbiter 4
Experiments on Lunar Orbiter 4
Data collections from Lunar Orbiter 4
Description
Lunar Orbiter 4 was designed to take advantage of the fact that the three previous Lunar Orbiters had completed the required needs for Apollo mapping and site selection. It was given a more general objective, to “perform a broad systematic photographic survey of lunar surface features in order to increase the scientific knowledge of their nature, origin, and processes, and to serve as a basis for selecting sites for more detailed scientific study by subsequent orbital and landing missions. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data. The spacecraft was placed in a cislunar trajectory and injected into an elliptical near polar high lunar orbit for data acquisition. The orbit was 2706 km x 6111 km with an inclination of 85.5 degrees and a period of 12 hours.

Continue reading “Lunar Orbiter 4 Mission”

Lunar Orbiter 3 Mission

Alternate Names: Lunar Orbiter-C, 02666
Launch Date: 1967-02-05
Launch Vehicle: Atlas-Agena D
Launch Site: Cape Canaveral, United States
Mass: 385.6 kg
Nominal Power: 375.0 W
Launch/Orbital information for Lunar Orbiter 3
Experiments on Lunar Orbiter 3
Data collections from Lunar Orbiter 3
Description
The Lunar Orbiter 3 spacecraft was designed primarily to photograph areas of the lunar surface for confirmation of safe landing sites for the Surveyor and Apollo missions. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data. The spacecraft was placed in a cislunar trajectory and injected into an elliptical near-equatorial lunar orbit on 8 February at 21:54 UT. The orbit was 210.2 km x 1801.9 km with an inclination of 20.9 degrees and a period of 3 hours 25 minutes. After four days (25 orbits) of tracking the orbit was changed to 55 km x 1847 km. The spacecraft acquired photographic data from February 15 to 23, 1967, and readout occurred through March 2, 1967. The film advance mechanism showed erratic behavior during this period resulting in a decision to begin readout of the frames earlier than planned. The frames were read out successfully until 4 March when the film advance motor burned out, leaving about 25% of the frames on the takeup reel, unable to be read.

Continue reading “Lunar Orbiter 3 Mission”

Lunar Orbiter Project Briefing


Larger image
From Spaceflight Revolution: “Top NASA officials listen to a LOPO briefing at Langley in December 1966. Sitting to the far right with his hand on his chin is Floyd Thompson. To the left sits Dr. George Mueller, NASA associate administrator for Manned Space Flight. On the wall is a diagram of the sites selected for the “concentrated mission.” “The most fundamental issue in the pre-mission planning for Lunar Orbiter was how the moon was to be photographed. Would the photography be “concentrated” on a predetermined single target, or would it be “distributed” over several selected targets across the moon’s surface? On the answer to this basic question depended the successful integration of the entire mission plan for Lunar Orbiter.” The Lunar Orbiter Project made systematic photographic maps of the lunar landing sites. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 337.

Lunar Orbiter 2 Mission

Alternate Names: Lunar Orbiter-B, 02534
Launch Date: 1966-11-06
Launch Vehicle: Atlas-Agena D
Launch Site: Cape Canaveral, United States
Mass: 385.6 kg
Nominal Power: 375.0 W
Launch/Orbital information for Lunar Orbiter 2
Experiments on Lunar Orbiter 2
Data collections from Lunar Orbiter 2
Description
The Lunar Orbiter 2 spacecraft was designed primarily to photograph smooth areas of the lunar surface for selection and verification of safe landing sites for the Surveyor and Apollo missions. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data. The spacecraft was placed in a cislunar trajectory and injected into an elliptical near-equatorial lunar orbit for data acquisition after 92.5 hours flight time. The initial orbit was 196 km x 1850 km at an inclination of 11.8 degrees. The perilune was lowered to 49.7 km five days later after 33 orbits. A failure of the amplifier on the final day of readout, 7 December, resulted in the loss of six photographs. On 8 December 1966 the inclination was altered to 17.5 degrees to provide new data on lunar gravity.

Continue reading “Lunar Orbiter 2 Mission”

Lunar Orbiter 1 Mission

Alternate Names: Lunar Orbiter-A, 02394
Launch Date: 1966-08-10
Launch Vehicle: Atlas-Agena D
Launch Site: Cape Canaveral, United States
Mass: 385.6 kg
Nominal Power: 375.0 W
Launch/Orbital information for Lunar Orbiter 1
Experiments on Lunar Orbiter 1
Data collections from Lunar Orbiter 1
Description
The Lunar Orbiter 1 spacecraft was designed primarily to photograph smooth areas of the lunar surface for selection and verification of safe landing sites for the Surveyor and Apollo missions. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data. The spacecraft was placed in an Earth parking orbit on 10 August 1966 at 19:31 UT and injected into a cislunar trajectory at 20:04 UT. The spacecraft experienced a temporary failure of the Canopus star tracker (probably due to stray sunlight) and overheating during its cruise to the Moon. The star tracker problem was resolved by navigating using the Moon as a reference and the overheating was abated by orienting the spacecraft 36 degrees off-Sun to lower the temperature.

Continue reading “Lunar Orbiter 1 Mission”

Lunar Orbiter Typical Flight Sequence of Events


Larger image
Lunar Orbiter’s “Typical Flight sequence of Events” turned out to be quite typical indeed, as all five spacecraft performed exactly as planned. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 340.

Photo: Lunar Orbiter Press Conference at JPL


NASA Caption: “Lunar Orbiter press conference at the Jet Propulsion Laboratory. A mockup of the solar-powered spacecraft (called the “Two-Eyed Robot”) is shown on the right. It was built by Boeing for the NASA Langley Research Center. From Edgar M. Cortright, “Scouting the Moon” in Apollo Expeditions to the Moon: “It was in its photo system that Orbiter was most unconventional. Other spacecraft took TV images and sent them back to Earth as electrical signals. Orbiter took photographs, developed them on board, and then scanned them with a special photoelectric system–a method that, for all its complications and limitations, could produce images of exceptional quality. One Orbiter camera could resolve details as small as 3 feet from an altitude of 30 nautical miles. A sample complication exacted by this performance: because slow film had to be used (because of risk of radiation fogging), slow shutter speeds were also needed. This meant that, to prevent blurring from spacecraft motion, a velocity-height sensor had to insure that the film was moved a tiny, precise, and compensatory amount during the instant of exposure.” Published in Edgar M. Cortright, “Scouting the Moon, ” in Apollo Expeditions to the Moon, ed. Edgar M. Cortright, (Washington: NASA SP-350, 1975), p. 93.” Larger image